Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.932
Filtrar
1.
Scand J Immunol ; 99(5): e13358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605535

RESUMO

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Domínios de Homologia de src , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Células Jurkat , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina/metabolismo , Ligação Proteica , Quinases da Família src/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542228

RESUMO

Recently, we identified a novel mechanism of enzyme inhibition in N-myristoyltransferases (NMTs), which we have named 'inhibitor trapping'. Inhibitor trapping occurs when the protein captures the small molecule within its structural confines, thereby preventing its free dissociation and resulting in a dramatic increase in inhibitor affinity and potency. Here, we demonstrate that inhibitor trapping also occurs in the kinases. Remarkably, the drug imatinib, which has revolutionized targeted cancer therapy, is entrapped in the structure of the Abl kinase. This effect is also observed in p38α kinase, where inhibitor trapping was found to depend on a 'magic' methyl group, which stabilizes the protein conformation and increases the affinity of the compound dramatically. Altogether, these results suggest that inhibitor trapping is not exclusive to N-myristoyltransferases, as it also occurs in the kinase family. Inhibitor trapping could enhance the binding affinity of an inhibitor by thousands of times and is as a key mechanism that plays a critical role in determining drug affinity and potency.


Assuntos
Piperazinas , Pirimidinas , Pirimidinas/farmacologia , Piperazinas/farmacologia , Benzamidas/farmacologia , Mesilato de Imatinib/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Quinases da Família src/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Front Immunol ; 15: 1344761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487529

RESUMO

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Assuntos
Neutrófilos , Quinases da Família src , Humanos , Neutrófilos/metabolismo , Quinases da Família src/metabolismo , Fibronectinas/metabolismo , Antígenos CD18/metabolismo , Adesão Celular , Actinas/metabolismo , Fosfoproteínas/metabolismo , Antígeno de Macrófago 1/metabolismo
4.
PLoS One ; 19(3): e0296230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483858

RESUMO

SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.


Assuntos
Fosfoproteínas , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios de Homologia de src
5.
Eur J Pharmacol ; 967: 176389, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311282

RESUMO

Vasoconstriction induced by levobupivacaine, a local anesthetic, is mediated by increased levels of calcium, tyrosine kinase, c-Jun NH2-terminal kinase (JNK), and phospholipase D, which are associated with prolonged local anesthesia. Epidermal growth factor receptor (EGFR) phosphorylation is associated with vasoconstriction. However, its role in levobupivacaine-induced contractions remains unknown. We determined whether EGFR phosphorylation is associated with levobupivacaine-induced contractions in isolated rat thoracic aortas and identified the underlying cellular signaling pathways. The effects of various inhibitors and a calcium-free solution alone or in combination on levobupivacaine-induced contractions were then assessed. Furthermore, we examined the effects of various inhibitors on levobupivacaine-induced EGFR and JNK phosphorylation and calcium levels in vascular smooth muscle cells (VSMCs) of rat aortas. The EGFR tyrosine kinase inhibitor AG1478, matrix metalloproteinase (MMP) inhibitor GM6001, Src kinase inhibitors PP1 and PP2, and JNK inhibitor SP600125 attenuated levobupivacaine-induced contractions. Moreover, although the calcium-free solution abolished levobupivacaine-induced contractions, calcium reversed this inhibitory effect. The magnitude of the calcium-mediated reversal of abolished levobupivacaine-induced contractions was lower in the combination treatment with calcium-free solution and AG1478 than in the treatment with calcium-free solution alone. Levobupivacaine induced EGFR and JNK phosphorylation. However, AG1478, GM6001, and PP2 attenuated levobupivacaine-induced EGFR and JNK phosphorylation. Moreover, although levobupivacaine induced JNK phosphorylation in control siRNA-transfected VSMCs, EGFR siRNA inhibited levobupivacaine-induced JNK phosphorylation. Furthermore, AG1478 inhibited levobupivacaine-induced calcium increases in VSMCs. Collectively, these findings suggest that levobupivacaine-induced EGFR phosphorylation, which may occur via the Src kinase-MMP pathway, contributes to vasoconstriction via JNK phosphorylation and increased calcium levels.


Assuntos
Cálcio , Receptores ErbB , Quinazolinas , Tirfostinas , Animais , Ratos , Aorta Torácica , Cálcio/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Levobupivacaína/farmacologia , Fosforilação , RNA Interferente Pequeno/metabolismo , Quinases da Família src/metabolismo
6.
Nat Commun ; 15(1): 1300, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346942

RESUMO

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Camundongos Knockout , Reabsorção Óssea/genética , Receptores de Kisspeptina-1
7.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338729

RESUMO

Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.


Assuntos
Neoplasias , Quinases da Família src , Humanos , Proteínas Proto-Oncogênicas c-yes , Linhagem Celular Tumoral , Quinases da Família src/metabolismo , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Chin J Integr Med ; 30(4): 299-310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212502

RESUMO

OBJECTIVE: To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS: Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 ß, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS: In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 ß (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION: Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Quercetina/análogos & derivados , Ratos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Quinases da Família src/metabolismo , Quinases da Família src/farmacologia , Quinases da Família src/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Inflamação/patologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Células Cultivadas , Fibroblastos , Proliferação de Células
9.
Eur Rev Med Pharmacol Sci ; 28(1): 221-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235873

RESUMO

OBJECTIVE: C-terminal Src kinase (CSK), a sarcoma (Src) homologous family kinase, is one of the most important negative regulators. It acts as a tumor suppressor by inhibiting the activity of Src family tyrosine kinases. Paradoxically, CSK is highly expressed in a variety of common tumors. Therefore, we report the expression profile of CSK in pan-cancer patients, focusing on the prognostic value, immune infiltration pattern, and biological function of CSK in gastric cancer. MATERIALS AND METHODS: We used the TCGA database to analyze CSK expression, clinical relevance, prognostic significance, assessment of the tumor immune microenvironment, and GO and Kegg enrichment analysis based on co-expressed genes using a bioinformatics approach. RESULTS: CSK is a protective factor in gastric cancer, and its expression correlates with the level of immune cell infiltration and immune checkpoint molecules. CONCLUSIONS: Our findings suggest that CSK is an independent prognostic factor in gastric cancer and may predict molecular targeting and immunotherapy and provide ideas for its therapeutic strategy.


Assuntos
Neoplasias Gástricas , Quinases da Família src , Humanos , Quinases da Família src/metabolismo , Fosforilação , Proteína Tirosina Quinase CSK/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Prognóstico , Biomarcadores/metabolismo , Microambiente Tumoral
10.
Drug Resist Updat ; 73: 101051, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219531

RESUMO

Trastuzumab resistance in HER2+ breast cancer (BC) is the major reason leading to poor prognosis of BC patients. Oncogenic gene overexpression or aberrant activation of tyrosine kinase SRC is identified to be the key modulator of trastuzumab response. However, the detailed regulatory mechanisms underlying SRC activation-associated trastuzumab resistance remain poorly understood. In the present study, we discover that SRC-mediated YAP1 tyrosine phosphorylation facilitates its interaction with transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha, TFAP2A), which in turn promotes YAP1/TEAD-TFAP2A (YTT) complex-associated transcriptional outputs, thereby conferring trastuzumab resistance in HER2+ BC. Inhibition of SRC kinase activity or disruption of YTT complex sensitizes cells to trastuzumab treatment in vitro and in vivo. Additionally, we also identify YTT complex co-occupies the regulatory regions of a series of genes related to trastuzumab resistance and directly regulates their transcriptions, including EGFR, HER2, H19 and CTGF. Moreover, YTT-mediated transcriptional regulation is coordinated by SRC kinase activity. Taken together, our study reveals that SRC-mediated YTT complex formation and transcriptions are responsible for multiple mechanisms associated with trastuzumab resistance. Therefore, targeting HER2 signaling in combination with the inhibition of YTT-associated transcriptional outputs could serve as the treatment strategy to overcome trastuzumab resistance caused by SRC activation.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosforilação , Fator de Transcrição AP-2/metabolismo , Receptor ErbB-2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Quinases da Família src/metabolismo , Quinases da Família src/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina/metabolismo , Tirosina/uso terapêutico
11.
PLoS One ; 19(1): e0297166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285689

RESUMO

Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.


Assuntos
Fixação Psicológica Instintiva , NADH Desidrogenase , Quinases da Família src , Animais , Galinhas , Fixação Psicológica Instintiva/fisiologia , Aprendizagem/fisiologia , Prosencéfalo/fisiologia , Tirosina , Quinases da Família src/metabolismo
12.
J Biomol Struct Dyn ; 42(3): 1582-1614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37144746

RESUMO

The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.


Assuntos
Antineoplásicos , Quinases da Família src , Quinases da Família src/química , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK , Pirimidinas/farmacologia , Pirimidinas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Aminoácidos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
13.
Chem Biol Drug Des ; 103(1): e14379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873688

RESUMO

Designing kinase inhibitors that bind to the substrate site of oncogenic kinases in a promising, albeit less explored, approach to kinase inhibition as it was sought to avoid the issue of untoward off-target modulations. Our previously identified compound KAC-12 with a meta-chlorophenyl substitution was an example of this approach. While it showed confirmed inhibitory activity against cancer cells, this substitution shifted the profile of affected targets away from Src/tubulin which were seen with the parent KX-01. In this paper, we synthesized compounds with ortho-substitutions, and we investigated the effect of such substitutions on their cellular and subcellular activities. The compound N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-2-(morpholine-4-carbonyl)benzamide (4) exhibited substantial activities against cell lines such HCT116 (IC50 of 0.97 µM) and IC50 HL60 (2.84 µM). Kinase profiling showed that compound 4 trended consistently with KAC-12 as it did not affect Src, but it had more impact on members of the Src family of kinases (SFK) such as Yes, Hck, Fyn, Lck, and Lyn. Both compounds exhibited profound downregulation effects on Erk1/2 but differed on others such as GSK3α/ß and C-Jun. Collectively, this study further support to the hypothesis that small structural changes might bring higher changes in their kinome profile.


Assuntos
Benzamidas , Quinases da Família src , Quinases da Família src/metabolismo , Linhagem Celular , Benzamidas/farmacologia
14.
Cancer Lett ; 582: 216516, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052369

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic, and has the poorest prognosis among all breast cancer subtypes. Activated ß-catenin is enriched in TNBC and involved in Wnt signaling-independent metastasis. However, the underlying mechanisms of ß-catenin activation in TNBC remain unknown. Here, we found that SHC4 was upregulated in TNBC and high SHC4 expression was significantly correlated with poor outcomes. Overexpression of SHC4 promoted TNBC aggressiveness in vitro and facilitated TNBC metastasis in vivo. Mechanistically, SHC4 interacted with Src and maintained its autophosphorylated activation, which activated ß-catenin independent of Wnt signaling, and finally upregulated the transcription and expression of its downstream genes CD44 and MMP7. Furthermore, we determined that the PxPPxPxxxPxxP sequence on CH2 domain of SHC4 was critical for SHC4-Src binding and Src kinase activation. Overall, our results revealed the mechanism of ß-catenin activation independent of Wnt signaling in TNBC, which was driven by SHC4-induced Src autophosphorylation, suggesting that SHC4 might be a potential prognostic marker and therapeutic target in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Quinases da Família src/genética , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Via de Sinalização Wnt/genética , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
15.
Psychopharmacology (Berl) ; 241(1): 61-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700085

RESUMO

Memories are stored into long-term representations through a process that depends on protein synthesis. However, a consolidated memory is not static and inflexible and can be reactivated under certain circumstances, the retrieval is able to reactivate memories and destabilize them engaging a process of restabilization known as reconsolidation. Although the molecular mechanisms that mediate fear memory reconsolidation are not entirely known, so here we investigated the molecular mechanisms in the hippocampus involved in contextual fear conditioning memory (CFC) reconsolidation in male Wistar rats. We demonstrated that the blockade of Src family kinases (SFKs), GluN2B-containing NMDA receptors and TrkB receptors (TrkBR) in the CA1 region of the hippocampus immediately after the reactivation session impaired contextual fear memory reconsolidation. These impairments were blocked by the neurotrophin BDNF and the NMDAR agonist, D-Serine. Considering that the study of the link between synaptic proteins is crucial for understanding memory processes, targeting the reconsolidation process may provide new ways of disrupting maladaptive memories, such as those seen in post-traumatic stress disorder. Here we provide new insights into the cellular mechanisms involved in contextual fear memory reconsolidation, demonstrating that SFKs, GluN2B-containing NMDAR, and TrkBR are necessary for the reconsolidation process. Our findings suggest a link between BDNF and SFKs and GluN2B-containing NMDAR as well as a link between NMDAR and SFKs and TrkBR in fear memory reconsolidation. These preliminary pharmacological findings provide new evidence of the mechanisms involved in the reconsolidation of fear memory and have the potential to contribute to the development of treatments for psychiatric disorders involving maladaptive memories.


Assuntos
Receptores de N-Metil-D-Aspartato , Quinases da Família src , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Medo/fisiologia , Hipocampo/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Quinases da Família src/metabolismo
16.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099418

RESUMO

C­X­C motif chemokine 12 (CXCL12) promotes metastasis of several tumors by affecting cell migration and invasion via its receptors, C­X­C chemokine receptor type (CXCR)4 and CXCR7. Current therapeutic approaches focus on the selective inactivation of either CXCR4 or CXCR7 in patients with cancer. Alternative strategies may emerge from the analysis of downstream events that mediate the migratory effects of CXCL12 in cancer cells. While CXCR4 activates cell signaling through both G proteins and arrestins, CXCR7 is believed to preferentially signal through arrestins. The present study analyzed the CXCL12­dependent chemotaxis of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells, in which either the activity of G proteins, EGFR or Src kinase was inhibited pharmacologically or the expression of arrestins was inhibited by RNA interference. The results demonstrated that CXCL12­induced migration of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells was attenuated by the Gαi/o­inhibitor pertussis toxin (PTX), but was unaffected by small interfering RNA­mediated gene silencing of ß­arrestin1/2. In particular, the sensitivity of DLD­1 migration to PTX was unexpected, as it is solely dependent on the non­classical chemokine receptor, CXCR7. Furthermore, chemotactic responses to CXCL12 were additionally prevented by inhibiting EGFR activity via AG1478 and Src kinase activity via Src inhibitor­1. In conclusion, the results of the present study suggest that G protein­ and Src­dependent transactivation of EGFR is a common mechanism through which CXCL12­bound CXCR4 and/or CXCR7 control cancer cell migration and metastasis. These findings highlight EGFR as a potential therapeutic target that interferes with CXCL12­induced cancer expansion.


Assuntos
Neoplasias , Receptores CXCR , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Ativação Transcricional , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Movimento Celular , Arrestinas/genética , Arrestinas/metabolismo , Arrestinas/farmacologia , Quinases da Família src/genética , Quinases da Família src/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
17.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38078859

RESUMO

TLR/IL-1R signaling plays a critical role in sensing various harmful foreign pathogens and mounting efficient innate and adaptive immune responses, and it is tightly controlled by intracellular regulators at multiple levels. In particular, TOLLIP forms a constitutive complex with IRAK1 and sequesters it in the cytosol to maintain the kinase in an inactive conformation under unstimulated conditions. However, the underlying mechanisms by which IRAK1 dissociates from TOLLIP to activate TLR/IL-1R signaling remain obscure. Herein, we show that BLK positively regulates TLR/IL-1R-mediated inflammatory response. BLK-deficient mice produce less inflammatory cytokines and are more resistant to death upon IL-1ß challenge. Mechanistically, BLK is preassociated with IL1R1 and IL1RAcP in resting cells. IL-1ß stimulation induces heterodimerization of IL1R1 and IL1RAcP, which further triggers BLK autophosphorylation at Y309. Activated BLK directly phosphorylates TOLLIP at Y76/86/152 and further promotes TOLLIP dissociation from IRAK1, thereby facilitating TLR/IL-1R-mediated signal transduction. Overall, these findings highlight the importance of BLK as an active regulatory component in TLR/IL-1R signaling.


Assuntos
Citocinas , Quinases Associadas a Receptores de Interleucina-1 , Transdução de Sinais , Quinases da Família src , Animais , Camundongos , Citocinas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Fosforilação , Quinases da Família src/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079542

RESUMO

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Antígenos Transformantes de Poliomavirus/metabolismo , Poliomavírus das Células de Merkel/metabolismo , NF-kappa B/metabolismo , Quinases da Família src/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Tirosina/metabolismo
19.
Biomolecules ; 13(12)2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38136610

RESUMO

Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.


Assuntos
Transdução de Sinais , Quinases da Família src , Humanos , Fosforilação , Quinases da Família src/metabolismo , Calmodulina/metabolismo , Oncogenes
20.
J Biol Chem ; 299(12): 105462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977223

RESUMO

The accumulation of abnormal Tau protein is a common feature of various neurodegenerative diseases. Truncated Tau, resulting from cleavage by asparaginyl endopeptidase (AEP, δ-secretase), promotes its own phosphorylation and aggregation. Our study focused on understanding the regulatory mechanisms of AEP activation and its interaction with other proteins. We discovered that c-Src plays a critical role in mediating the activation and polyubiquitination of AEP in response to epidermal growth factor stimulation. In addition, we investigated the involvement of tumor necrosis factor receptor-associated factor 6 (Traf6), an E3 ligase, in the regulation of AEP levels and its interaction with c-Src. Knockdown of Traf6 effectively inhibited c-Src-induced AEP activation. To gain further insights into the molecular mechanisms, we employed mass spectrometry to identify the specific tyrosine residues of Traf6 that are phosphorylated by c-Src. By mutating these phosphorylation sites to phenylalanine, we disrupted Traf6-mediated polyubiquitination and subsequently observed the inactivation of AEP. This finding suggests that the phosphorylation of Traf6 by c-Src is crucial for AEP activation. Pharmacological inhibition of c-Src reduced the phosphorylation of Traf6 and inhibited AEP activation in neurons derived from human-induced pluripotent stem cells. Conditional knockout of Traf6 in neurons prevented c-Src-induced AEP activation and subsequent Tau truncation in vivo. Moreover, phosphorylation of Traf6 is highly correlated with AEP activation, Tau368 and pathological Tau (AT8) in Alzheimer's disease brain. Overall, our study elucidates the role of c-Src in regulating AEP-cleaved Tau through phosphorylating Traf6. Targeting the c-Src-Traf6 pathway may hold potential for the treatment of Alzheimer's disease and other tauopathies.


Assuntos
Cisteína Endopeptidases , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Quinases da Família src , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cisteína Endopeptidases/metabolismo , Fosforilação , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Proteínas tau/metabolismo , Fator 6 Associado a Receptor de TNF/química , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ativação Enzimática , Fenilalanina , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...